Goto

Collaborating Authors

 Calgary Metropolitan Region


Navigating Extremes: Dynamic Sparsity in Large Output Spaces 1 Mike Lasby

Neural Information Processing Systems

In recent years, Dynamic Sparse Training (DST) has emerged as an alternative to posttraining pruning for generating efficient models. In principle, DST allows for a more memory efficient training process, as it maintains sparsity throughout the entire training run. However, current DST implementations fail to capitalize on this in practice. Because sparse matrix multiplication is much less efficient than dense matrix multiplication on GPUs, most implementations simulate sparsity by masking weights. In this paper, we leverage recent advances in semi-structured sparse training to apply DST in the domain of classification with large output spaces, where memory-efficiency is paramount.


Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions

arXiv.org Artificial Intelligence

This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.


SafeSlice: Enabling SLA-Compliant O-RAN Slicing via Safe Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL)-based slicing policies have shown significant success in simulated environments but face challenges in physical systems such as open radio access networks (O-RANs) due to simulation-to-reality gaps. These policies often lack safety guarantees to ensure compliance with service level agreements (SLAs), such as the strict latency requirements of immersive applications. As a result, a deployed DRL slicing agent may make resource allocation (RA) decisions that degrade system performance, particularly in previously unseen scenarios. Real-world immersive applications require maintaining SLA constraints throughout deployment to prevent risky DRL exploration. In this paper, we propose SafeSlice to address both the cumulative (trajectory-wise) and instantaneous (state-wise) latency constraints of O-RAN slices. We incorporate the cumulative constraints by designing a sigmoid-based risk-sensitive reward function that reflects the slices' latency requirements. Moreover, we build a supervised learning cost model as part of a safety layer that projects the slicing agent's RA actions to the nearest safe actions, fulfilling instantaneous constraints. We conduct an exhaustive experiment that supports multiple services, including real virtual reality (VR) gaming traffic, to investigate the performance of SafeSlice under extreme and changing deployment conditions. SafeSlice achieves reductions of up to 83.23% in average cumulative latency, 93.24% in instantaneous latency violations, and 22.13% in resource consumption compared to the baselines. The results also indicate SafeSlice's robustness to changing the threshold configurations of latency constraints, a vital deployment scenario that will be realized by the O-RAN paradigm to empower mobile network operators (MNOs).


Quantum-Assisted Support Vector Regression

arXiv.org Artificial Intelligence

A popular machine-learning model for regression tasks, including stock-market prediction, weather forecasting and real-estate pricing, is the classical support vector regression (SVR). However, a practically realisable quantum SVR remains to be formulated. We devise annealing-based algorithms, namely simulated and quantum-classical hybrid, for training two SVR models and compare their empirical performances against the SVR implementation of Python's scikit-learn package for facial-landmark detection (FLD), a particular use case for SVR. Our method is to derive a quadratic-unconstrained-binary formulation for the optimisation problem used for training a SVR model and solve this problem using annealing. Using D-Wave's hybrid solver, we construct a quantum-assisted SVR model, thereby demonstrating a slight advantage over classical models regarding FLD accuracy. Furthermore, we observe that annealing-based SVR models predict landmarks with lower variances compared to the SVR models trained by gradient-based methods. Our work is a proof-of-concept example for applying quantum-assisted SVR to a supervised-learning task with a small training dataset.


Physics-constrained DeepONet for Surrogate CFD models: a curved backward-facing step case

arXiv.org Artificial Intelligence

The Physics-Constrained DeepONet (PC-DeepONet), an architecture that incorporates fundamental physics knowledge into the data-driven DeepONet model, is presented in this study. This methodology is exemplified through surrogate modeling of fluid dynamics over a curved backward-facing step, a benchmark problem in computational fluid dynamics. The model was trained on computational fluid dynamics data generated for a range of parameterized geometries. The PC-DeepONet was able to learn the mapping from the parameters describing the geometry to the velocity and pressure fields. While the DeepONet is solely data-driven, the PC-DeepONet imposes the divergence constraint from the continuity equation onto the network. The PC-DeepONet demonstrates higher accuracy than the data-driven baseline, especially when trained on sparse data. Both models attain convergence with a small dataset of 50 samples and require only 50 iterations for convergence, highlighting the efficiency of neural operators in learning the dynamics governed by partial differential equations.


Hallucination Detection in Large Language Models with Metamorphic Relations

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are prone to hallucinations, e.g., factually incorrect information, in their responses. These hallucinations present challenges for LLM-based applications that demand high factual accuracy. Existing hallucination detection methods primarily depend on external resources, which can suffer from issues such as low availability, incomplete coverage, privacy concerns, high latency, low reliability, and poor scalability. There are also methods depending on output probabilities, which are often inaccessible for closed-source LLMs like GPT models. This paper presents MetaQA, a self-contained hallucination detection approach that leverages metamorphic relation and prompt mutation. Unlike existing methods, MetaQA operates without any external resources and is compatible with both open-source and closed-source LLMs. MetaQA is based on the hypothesis that if an LLM's response is a hallucination, the designed metamorphic relations will be violated. We compare MetaQA with the state-of-the-art zero-resource hallucination detection method, SelfCheckGPT, across multiple datasets, and on two open-source and two closed-source LLMs. Our results reveal that MetaQA outperforms SelfCheckGPT in terms of precision, recall, and f1 score. For the four LLMs we study, MetaQA outperforms SelfCheckGPT with a superiority margin ranging from 0.041 - 0.113 (for precision), 0.143 - 0.430 (for recall), and 0.154 - 0.368 (for F1-score). For instance, with Mistral-7B, MetaQA achieves an average F1-score of 0.435, compared to SelfCheckGPT's F1-score of 0.205, representing an improvement rate of 112.2%. MetaQA also demonstrates superiority across all different categories of questions.


SED2AM: Solving Multi-Trip Time-Dependent Vehicle Routing Problem using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL)-based frameworks, featuring Transformer-style policy networks, have demonstrated their efficacy across various vehicle routing problem (VRP) variants. However, the application of these methods to the multi-trip time-dependent vehicle routing problem (MTTDVRP) with maximum working hours constraints -- a pivotal element of urban logistics -- remains largely unexplored. This paper introduces a DRL-based method called the Simultaneous Encoder and Dual Decoder Attention Model (SED2AM), tailored for the MTTDVRP with maximum working hours constraints. The proposed method introduces a temporal locality inductive bias to the encoding module of the policy networks, enabling it to effectively account for the time-dependency in travel distance or time. The decoding module of SED2AM includes a vehicle selection decoder that selects a vehicle from the fleet, effectively associating trips with vehicles for functional multi-trip routing. Additionally, this decoding module is equipped with a trip construction decoder leveraged for constructing trips for the vehicles. This policy model is equipped with two classes of state representations, fleet state and routing state, providing the information needed for effective route construction in the presence of maximum working hours constraints. Experimental results using real-world datasets from two major Canadian cities not only show that SED2AM outperforms the current state-of-the-art DRL-based and metaheuristic-based baselines but also demonstrate its generalizability to solve larger-scale problems.


Generative adversarial networks vs large language models: a comparative study on synthetic tabular data generation

arXiv.org Artificial Intelligence

We propose a new framework for zero-shot generation of synthetic tabular data. Using the large language model (LLM) GPT-4o and plain-language prompting, we demonstrate the ability to generate high-fidelity tabular data without task-specific fine-tuning or access to real-world data (RWD) for pre-training. To benchmark GPT-4o, we compared the fidelity and privacy of LLM-generated synthetic data against data generated with the conditional tabular generative adversarial network (CTGAN), across three open-access datasets: Iris, Fish Measurements, and Real Estate Valuation. Despite the zero-shot approach, GPT-4o outperformed CTGAN in preserving means, 95% confidence intervals, bivariate correlations, and data privacy of RWD, even at amplified sample sizes. Notably, correlations between parameters were consistently preserved with appropriate direction and strength. However, refinement is necessary to better retain distributional characteristics. These findings highlight the potential of LLMs in tabular data synthesis, offering an accessible alternative to generative adversarial networks and variational autoencoders.


Zero-shot generation of synthetic neurosurgical data with large language models

arXiv.org Artificial Intelligence

Clinical data is fundamental to advance neurosurgical research, but access is often constrained by data availability, small sample sizes, privacy regulations, and resource-intensive preprocessing and de-identification procedures. Synthetic data offers a potential solution to challenges associated with accessing and using real-world data (RWD). This study aims to evaluate the capability of zero-shot generation of synthetic neurosurgical data with a large language model (LLM), GPT-4o, by benchmarking with the conditional tabular generative adversarial network (CTGAN). Synthetic datasets were compared to real-world neurosurgical data to assess fidelity (means, proportions, distributions, and bivariate correlations), utility (ML classifier performance on RWD), and privacy (duplication of records from RWD). The GPT-4o-generated datasets matched or exceeded CTGAN performance, despite no fine-tuning or access to RWD for pre-training. Datasets demonstrated high univariate and bivariate fidelity to RWD without directly exposing any real patient records, even at amplified sample size. Training an ML classifier on GPT-4o-generated data and testing on RWD for a binary prediction task showed an F1 score (0.706) with comparable performance to training on the CTGAN data (0.705) for predicting postoperative functional status deterioration. GPT-4o demonstrated a promising ability to generate high-fidelity synthetic neurosurgical data. These findings also indicate that data synthesized with GPT-4o can effectively augment clinical data with small sample sizes, and train ML models for prediction of neurosurgical outcomes. Further investigation is necessary to improve the preservation of distributional characteristics and boost classifier performance.


Perceived Confidence Scoring for Data Annotation with Zero-Shot LLMs

arXiv.org Artificial Intelligence

Zero-shot LLMs are now also used for textual classification tasks, e.g., sentiment/emotion detection of a given input as a sentence/article. However, their performance can be suboptimal in such data annotation tasks. We introduce a novel technique Perceived Confidence Scoring (PCS) that evaluates LLM's confidence for its classification of an input by leveraging Metamorphic Relations (MRs). The MRs generate semantically equivalent yet textually mutated versions of the input. Following the principles of Metamorphic Testing (MT), the mutated versions are expected to have annotation labels similar to the input. By analyzing the consistency of LLM responses across these variations, PCS computes a confidence score based on the frequency of predicted labels. PCS can be used both for single LLM and multiple LLM settings (e.g., majority voting). We introduce an algorithm Perceived Differential Evolution (PDE) that determines the optimal weights assigned to the MRs and the LLMs for a classification task. Empirical evaluation shows PCS significantly improves zero-shot accuracy for Llama-3-8B-Instruct (4.96%) and Mistral-7B-Instruct-v0.3 (10.52%), with Gemma-2-9b-it showing a 9.39% gain. When combining all three models, PCS significantly outperforms majority voting by 7.75%.